
The TauP Toolkit:
Flexible Seismic Travel-Time and Raypath Utilities

Version 2.1
Documentation

H. Philip Crotwell, Thomas J. Owens
Department of Geological Sciences

University of South Carolina
http://www.seis.sc.edu
crotwell@seis.sc.edu

Copyright (c) 1998-2011 Board of Trustees of the University of South Carolina,
All Rights Reserved

User’s Guide i

Contents

1 Overview 1

2 Distribution 2

2.1 What and Where . 2

2.2 Advantages of the Current Release . 2

2.3 Future Plans . 2

3 Tools 4

3.1 Default Parameters . 4

3.2 TauP Time . 6

3.3 TauP Pierce . 7

3.4 TauP Path . 8

3.5 TauP Wavefront . 9

3.6 TauP . 10

3.7 TauP Curve . 11

3.8 TauP SetSac . 11

3.9 TauP Table . 12

3.10 TauP Create . 13

3.11 TauP Console . 14

4 Phase naming in TauP 15

5 Creating and Saving Velocity Models 18

5.1 Velocity Model Files . 18

5.2 Using Saved Tau Models . 19

6 Programming Interface 20

6.1 Java . 20

6.2 Jacl . 21

6.3 C . 23

7 Examples 25

7.1 Velocity Model Files . 25

7.2 Creating the Model . 25

7.3 Travel Times . 26

7.4 Pierce Points . 27

User’s Guide ii

7.5 Path . 28

7.6 Travel Time Curves . 28

A Installing 29

B Troubleshooting 30

User’s Guide iii

Disclaimer and License

The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities.
Copyright (C) 1998-2010 University of South Carolina

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

The current version of The TauP Toolkit can be found at
http://www.seis.sc.edu

Bug reports and comments should be directed to
H. Philip Crotwell or Tom Owens
at the TauP email list, taup@seis.sc.edu

The TauP Toolkit is available free under the terms of the GNU General Public License, found in the gpl-3.0.txt file
within the distribution. It gives you specific rights to use, modify and redistribute this software. Please be aware
of section 5 of the license which specifically prevents you from redistributing this software incorporated, in whole
or on part, into to a work, unless that work is also covered by the GNU General Public License. Please see the
Free Software Foundation’s web site, www.fsf.org, for more information.

User’s Guide 1

1 Overview

The algorithms employed within the TauP package are based on the method of Buland and Chapman (1983). The
IASPEI ttimes package is a widely-used implementation of the methodology.

The main benefit of this new package is a marked increase in flexibility. It will handle many types of velocity
models, instead of being limited to just a few. A new phase parser allows times to be computed for virtually any
seismic phase. The use of Java enables this code to be run on a variety of machine and operating system types,
without recompiling. This package also offers the extraction of derivative information, such as ray paths through
the earth, pierce and turning points, as well as travel time curves.

A paper has been published in Seismological Research Letters, (Crotwell et al., 1998), that is intended to be used
as a companion to this manual. While this manual mainly focuses on the praticalities of using the codes, the paper
is able to go into more detail on the methodology. A pdf copy of this paper is also available in the distribution.

User’s Guide 2

2 Distribution

2.1 What and Where

The current distribution of the TauP package is 2.0, dated July 11, 2011.

The distribution directory obtained from either the gzipped tar file or the jar file contains:

README getting started information
gpl-3.0.txt the GNU GPL license
StdModels standard models included in the jar in lib
bin directory containing “wrapper scripts” to start the tools, each will print a

usage with a –help command line argument.
lib all the Java classes included in the package, along with saved models for

prem, iasp91, and ak135 in the TauP jar file. Also included are depen-
dancy jars.

doc a directory with the TauP paper published in SRL and this manual, in-
stallation instructions are in the appendix. Also included are javadocs,
example properties, example taup console script, history, Maple version
of equations used, and a simple model file.

jacl a directory with Jacl examples for accessing the TauP package directly
within scripts.

native a directory with a C library and example program that use the Java Native
Interface, providing a basic interface between C programs and the TauP
package.

src a directory with all of the java source code.

The taup.jar file contains everything needed for a working version of the package. This greatly simplifies the
installation process and reduces potential errors. See appendix A for detailed installation instructions.

2.2 Advantages of the Current Release

The increased flexibility of this package provides significant advantages. Among these are:

1. The ability to use many different models. We include a variety of previously created models as well as the
option of creating your own models. A conscious effort was made to make as few assumptions as possible
about the nature of the model. Therefore, even models that have very different structures than common
global models can be used.

2. Phase parsing. Phases are not hard coded into the program, instead the phase names are parsed. This creates
an opportunity for the study of less common phases that are not present in previous travel time calculators.

3. Programming interface for Java. Because of the use of the Java programming language, all of the tools
exist simultaneously as both applications and libraries. Thus, any Java code that has a need for travel times
can load and manipulate the objects within this package. In addition, Jacl, the Java implementation of the
popular Tcl scripting language, provides a simple means of directly accessing the public methods within the
package.

2.3 Future Plans

There are several ideas for improvements that we may pursue, such as:

User’s Guide 3

1. A GUI. A graphical user interface would greatly improve the usefulness of this package, especially for non
command line uses such as on the Macintosh or within web browsers. The beginings of such a GUI are
there in the TauP tool, but at present it cannot access all of the functionality of the tools.

2. Use of the τ function. In spite of the name, TauP does not yet use Tau splines. At present I do not believe
that this would provide a large improvement over the current linear interpolation, but it is likely worth doing.

3. Web based applet. One of Java’s main uses currently is for the development of web based applets. An
applet is a small application that is downloaded and executed within a web browser. This is an attractive
opportunity and we have a simple example of one included in this distribution. There are difficulties as the
network time to download the model files may be unacceptable, as well as the lack of support for Java 1.1
in current browsers. A client server architecture as well as the continued improvement of commercial web
browsers may be able to address these issues.

4. 1.1D models. There is nothing in the method that requires the source and receiver velocity models to be the
same. With this idea, a separate crustal model appropriate to each region could be used for the source and
receiver.

5. WKBJ synthetics. The calculation of τ is a necessary step for WKBJ synthetics, and so this is a natural
direction. It likely involves significant effort, however.

User’s Guide 4

3 Tools

Tools included with the TauP package:

taup time calculates travel times.
taup pierce calculates pierce points at model discontinuities and spec-

ified depths.
taup path calculates ray paths, depth versus epicentral distance.
taup wavefront calculates wavefronts in steps of time, depth versus epi-

central distance.
taup a GUI that incorporates the time, pierce and path tools.

This requires swing, and hence may not work on some
java1.1 systems.

taup curve calculates travel time curves, time versus epicentral dis-
tance.

taup table outputs travel times for a range of depths and distances in
an ASCII file

taup setsac puts theoretical arrival times into sac header variables.
taup create creates a .taup model from a velocity model.
taup console Python scripting of TauP.

Each tool is a Java application and has an associated wrapper to make execution easier: sh scripts for UNIX and
bat files for windows. The applications are machine independent but the wrappers are OS specific. For example,
to invoke TauP Time under UNIX, you could type

java -Dtaup.model.path=${TAUPPATH} edu.sc.seis.TauP.TauP Time -mod prem

or simply use the script that does the same thing,

taup time -mod prem

Each tool has a --help flag that will print a usage summary, as well as a --version flag that will print the
version.

3.1 Default Parameters

Each of the tools use Java Properties to allow the user to specify values for various parameters. The properties all
have default values, which are overridden by values from a Properties file. The tools use .taup in the current
directory, which overwrites values read in from .taup in the user’s home directory. In addition, many of the
properties can be overridden by command line arguments.

The form of the properties file is very simple. Each property is set using the form

taup.property.name=value

one property per line. Comment lines are allowed, and begin with a #. Additionally, the names of all of the
properties follow a convention of prepending “taup.” to the name of the property. This helps to avoid name
collisions when new properties are added.

The currently used properties are:

taup.model.name the name of the initial model to be loaded, iasp91 by default.

taup.model.path search path for models. There is no default, but the value in the .taup file will be concatinated
with any value of taup.model.path from the system properties. For example, the environment variable
TAUPPATH is put into the system property taup.model.path by the wrapper shell scripts.

User’s Guide 5

taup.source.depth initial depth of the source, 0.0 km by default.

taup.phase.list initial phase list, combined with taup.phase.file. The defaults are p, s, P, S, Pn, Sn, PcP, ScS,
Pdiff, Sdiff, PKP, SKS, PKiKP, SKiKS, PKIKP, SKIKS.

taup.phase.file initial phase list, combined with taup.phase.list. There is no default value, but the default value
for taup.phase.list will not be used if there is a taup.phase.file property.

taup.depth.precision precision for depth output, the default is 1 decimal digit. Note that this is precision, not
accuracy. Just because you get more digits doesn’t imply that they have any meaning.

taup.distance.precision precision for distance output, the default is 2 decimal digits. Note that this is precision,
not accuracy. Just because you get more digits doesn’t imply that they have any meaning.

taup.latlon.precision precision for latitude and longitude output, the default is 2 decimal digits. Note that this is
precision, not accuracy. Just because you get more digits doesn’t imply that they have any meaning.

taup.time.precision precision for time, the default is 2 decimal digits. Note that this is precision, not accuracy.
Just because you get more digits doesn’t imply that they have any meaning.

taup.rayparam.precision precision for ray parameter, the default is 3 decimal digits. Note that this is precision,
not accuracy. Just because you get more digits doesn’t imply that they have any meaning.

taup.maxRefraction The maximum degrees that a Pn or Sn can refract along the moho. Note this is not the total
distance, only the segment along the moho. The default is 20 degrees.

taup.maxDiffraction The maximum degrees that a Pdiff or Sdiff can diffract along the CMB. Note this is not the
total distance, only the segment along the CMB. The default is 60 degrees.

taup.path.maxPathInc maximum distance in degrees between points of a path. This does a simple linear inter-
polant between nearby values in order to make plots look better. There is noo improvement in the accuracy
of the path.

taup.table.locsat.maxdiff maximum distance in degrees for which Pdiff or Sdiff are put into a locsat table. Be-
yond this distance Pdiff and Sdiff will not be added to the table, even though they may show up in the output
of TauP Time. Instead, the next later arriving phase, if any, will be used instead. The default is 105 degrees.

taup.create.minDeltaP Minimum difference in slowness between successive slowness samples. This is used to
decide when to stop adding new samples due to the distance check. Used by TauP Create to create new
models. The default is 0.1 sec/rad.

taup.create.maxDeltaP Maximum difference in slowness between successive slowness samples. This is used to
split any layers that exceed this slowness gap. Used by TauP Create to create new models. The default is
8.0 sec/rad.

taup.create.maxDepthInterval Maximum difference between successive depth samples. This is used immedi-
ately after reading in a velocity model, with layers being split as needed. Used by TauP Create to create
new models. The default is 115 km.

taup.create.maxRangeInterval Maximum difference between successive ranges, in degrees. If the difference in
distance for two adjacent rays is greater than this, then a new slowness sample is inserted halfway between
the two existing slowness samples. The default is 1.75 degrees.

taup.create.maxInterpError Maximum error for linear interpolation between successive sample in seconds.
TauP Create uses this to try to insure that the maximum error due to linear interpolation is less than this
amount. Of course, this is only an approximation based upon an estimate of the curvature of the travel time
curve for surface focus turning waves. In particular, the error for more complicated phases is greater. For
instance, if the true error for P at 30 degrees is 0.03 seconds, then the error for PP at 60 degrees would be
twice that, 0.06 seconds. Used by TauP Create to create new models. The default is 0.03 seconds.

User’s Guide 6

taup.create.allowInnerCoreS Should we allow J phases, S in the inner core? Used by TauP Create to create new
models. The default is true. Setting it to false slightly reduces storage and model load time.

Phase files, specified with the taup.phase.file property, are just text files with phase names, separated by either
spaces, commas or newlines. In section 4 the details of the phase naming convention are introduced. By and large,
it is compatible with traditional seismological naming conventions, with a few additions and exceptions. Also,
for compatiblity with ttimes, you may specify ttp, ttp+, tts, tts+, ttbasic or ttall to get a phase list
corresponding to the ttimes options.

3.2 TauP Time

TauP Time takes a either a .taup file generated by TauP Create or a velocity model in .nd or .tvel format and
generates travel times for specified phases through the given earth model.

The usage is:

piglet 1>taup_time --help
Usage: taup_time [arguments]

or, for purists, java edu.sc.seis.TauP.TauP_Time [arguments]

Arguments are:
-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases

-mod[el] modelname -- use velocity model "modelname" for calculations
Default is iasp91.

-h depth -- source depth in km

Distance is given by:

-deg degrees -- distance in degrees,
-km kilometers -- distance in kilometers,

assumes radius of earth is 6371km,

or by giving the station and event latitude and lonitude,
assumes a spherical earth,

-sta[tion] lat lon -- sets the station latitude and longitude
-evt lat lon -- sets the event latitude and longitude

--rayp -- only output the ray parameter
--time -- only output travel time

-o outfile -- output is redirected to "outfile"
--debug -- enable debugging output
--verbose -- enable verbose output
--version -- print the version
--help -- print this out, but you already know that!

The modelname is from modelname.taup, a previously created file from TauP Create or a modelname.nd
or modelname.tvel velocity model file. If there is insufficient information given on the command line, then
you start in interactive mode, otherwise it assumes you only want one set of times.

User’s Guide 7

The phases are specified on the command line with the -ph option, in a phase file with the -pf option, or in a
properties file. The model, phases, depth and distance can be changed within the interactive section of TauP Time.

For example: taup time -mod prem -h 200 -ph S,P -deg 57.4

gives you arrival times for S and P for a 200 kilometer deep source at a distance of 57.4 degrees.

piglet 2>taup_time -mod prem -h 200 -ph S,P -deg 57.4

Model: prem
Distance Depth Phase Travel Ray Param Purist Purist

(deg) (km) Name Time (s) p (s/deg) Distance Name
--

57.4 200.0 P 566.77 6.968 57.4 = P
57.4 200.0 S 1028.60 13.018 57.4 = S

3.3 TauP Pierce

TauP Pierce uses a model like TauP Time but determines the angular distances from the epicenter at which the
specified rays pierce discontinuities or specified depths in the model.

The usage is:

piglet 3>taup_pierce --help
Usage: taup_pierce [arguments]

or, for purists, java edu.sc.seis.TauP.TauP_Pierce [arguments]

Arguments are:
-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases

-mod[el] modelname -- use velocity model "modelname" for calculations
Default is iasp91.

-h depth -- source depth in km

Distance is given by:

-deg degrees -- distance in degrees,
-km kilometers -- distance in kilometers,

assumes radius of earth is 6371km,

or by giving the station and event latitude and lonitude,
assumes a spherical earth,

-sta[tion] lat lon -- sets the station latitude and longitude
-evt lat lon -- sets the event latitude and longitude

-az azimuth -- sets the azimuth (event to station)
used to output lat and lon of pierce points
if the event lat lon and distance are also
given. Calculated if station and event
lat and lon are given.

-baz backazimuth -- sets the back azimuth (station to event)

User’s Guide 8

used to output lat and lon of pierce points
if the station lat lon and distance are also
given. Calculated if station and event
lat and lon are given.

--rev -- only prints underside and bottom turn points, e.g. ˆ and v
--turn -- only prints bottom turning points, e.g. v
--under -- only prints underside reflection points, e.g. ˆ

--pierce depth -- adds depth for calculating pierce points
--nodiscon -- only prints pierce points for the depths added with -pierce

-o outfile -- output is redirected to "outfile"
--debug -- enable debugging output
--verbose -- enable verbose output
--version -- print the version
--help -- print this out, but you already know that!

The -rev, -turn and -under flags are useful for limiting the output to just those points you care about. The
-pierce depth option allows you to specify a “pierce” depth that does not correspond to an actual disconti-
nuity. For instance, where does a ray pierce 300 kilometers above the CMB?

For example:

taup pierce -mod prem -h 200 -ph S,P -deg 57.4

would give you pierce points for S, and P for a 200 kilometer deep source at a distance of 57.4 degrees.

While

taup pierce -turn -mod prem -h 200 -ph S,P -deg 57.4

would give you just the points that each ray turns from downgoing to upgoing.

Using -rev would give you all points that the ray changes direction and -under gives just the underside reflec-
tions.

Using the -pierce option

taup pierce -mod prem -h 200 -ph S -sta 12 34.2 -evt -28 122 --pierce 2591 --nodiscon

would give you just the points at which S crossed a depth of 2591 kilometers from an event at (28◦ S, 122◦ E)
to a station at (12◦ N, 34.2◦ E). Because we specified the latitudes and longitudes, we also get the latitudes and
longitudes of the pierce points, useful for making a map view of where the rays encounter the chosen depth. Here
is the output, distance, depth, latitude and longitude, respectively.

> S at 1424.1 seconds at 93.7 degrees for a 200.0 km deep source in the prem model.
31.58 2591.00 -17.86 89.39
61.44 2591.00 -3.90 62.43

3.4 TauP Path

TauP Path uses a model like TauP Time but generates the angular distances from the epicenter at which the spec-
ified rays pierce path that the phases travel. The output is in GMT (Wessel and Smith, 1995) “psxy” format,
and is placed into the file “taup path.gmt”. If you specify the “-gmt” flag then this is a complete script with the
appropriate “psxy” command prepended, so if you have GMT installed, you can just:

taup_path -mod iasp91 -h 550 -deg 74 -ph S,ScS,sS,sScS -gmt

User’s Guide 9

sh taup_path.gmt
ghostview taup_path.ps

and you have a plot of the ray paths. To avoid possible plotting errors for phases like Sdiff, the ray paths are
interpolated to less than 1 degree increments.

The usage is:

piglet 5>taup_path --help
Usage: taup_path [arguments]

or, for purists, java edu.sc.seis.TauP.TauP_Path [arguments]

Arguments are:
-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases

-mod[el] modelname -- use velocity model "modelname" for calculations
Default is iasp91.

-h depth -- source depth in km

Distance is given by:

-deg degrees -- distance in degrees,
-km kilometers -- distance in kilometers,

assumes radius of earth is 6371km,

or by giving the station and event latitude and lonitude,
assumes a spherical earth,

-sta[tion] lat lon -- sets the station latitude and longitude
-evt lat lon -- sets the event latitude and longitude

--gmt -- outputs path as a complete GMT script.

-o outfile -- output is redirected to "outfile"
--debug -- enable debugging output
--verbose -- enable verbose output
--version -- print the version
--help -- print this out, but you already know that!

3.5 TauP Wavefront

TauP Wavefront is similar to TauP Path, but plots the wavefront at timesteps instead of the ray paths. It also uses a
model like TauP Time and generates depth versus angular distances from the epicenter for the phases, but done at
time slices instaed of depth slices. The output is in GMT (Wessel and Smith, 1995) “psxy” format, and is placed
into the file “taup wavefront.gmt”. If you specify the “-gmt” flag then this is a complete script with the appropriate
“psxy” command prepended, so if you have GMT installed, you can just:

taup_wavefront -mod iasp91 -h 550 -ph S,ScS,sS,sScS --gmt
sh taup_wavefront.gmt
ghostview taup_wavefront.ps

User’s Guide 10

and you have a plot of the wavefronts.

The usage is:

piglet 5>taup_wavefront --help
Usage: taup_wavefront [arguments]

or, for purists, java edu.sc.seis.TauP.TauP_Wavefront [arguments]

Arguments are:
-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases

-mod[el] modelname -- use velocity model "modelname" for calculations
Default is iasp91.

-h depth -- source depth in km

Distance is given by:

-deg degrees -- distance in degrees,
-km kilometers -- distance in kilometers,

assumes radius of earth is 6371km,

or by giving the station and event latitude and lonitude,
assumes a spherical earth,

-sta[tion] lat lon -- sets the station latitude and longitude
-evt lat lon -- sets the event latitude and longitude

--rays num -- number of raypaths/distances to sample.
--timestep num -- steps in time (seconds) for output.
--phasecolor -- steps in time (seconds) for output.

-o outfile -- output is redirected to "outfile"
--debug -- enable debugging output
--verbose -- enable verbose output
--version -- print the version
--help -- print this out, but you already know that!

3.6 TauP

TauP is unlike the rest of the tools in that it doesn’t have any functionality beyond the other tools. It is just a GUI
that uses TauP Time, TauP Pierce and TauP Path. This is a nice feature of the java language in that each of these
applications exists simultaneously as a library. The GUI does not currently have full access to all the things that
these three tools can do, and certainly has a few rough edges, but can be useful for browsing. Lastly, it currently
does more work than it has to in that it always calculates times, pierce points and paths, even if only one is actually
needed. So, it may be a bit pokey.

User’s Guide 11

3.7 TauP Curve

TauP Curve creates a GMT style xy formated file of time versus distance. This can be used to create the familar
travel time curves, but for only the specified phases and depth. The curves are linearly interpolated between known
sample points, and can thus be used to get a feel for the coarseness of sampling. For example, curves for s, S, ScS
and Sdiff for a 500 kilometer deep event in PREM could be generated by:

taup curve -mod prem -h 500 -ph s,S,ScS,Sdiff --gmt

The -gmt option prepends a GMT psxy command to the output file, creating a runnable script instead of just a
data file. The output is put in taup curve.gmt by default, so to view the results:

sh taup_curve.gmt
ghostview taup_curve.ps

The uasage is:

piglet 6>taup_curve --help
Usage: taup_curve [arguments]

or, for purists, java edu.sc.seis.TauP.TauP_Curve [arguments]

Arguments are:
-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases

-mod[el] modelname -- use velocity model "modelname" for calculations
Default is iasp91.

-h depth -- source depth in km

--gmt -- outputs curves as a complete GMT script.
--reddeg velocity -- outputs curves with a reducing velocity (deg/sec).
--redkm velocity -- outputs curves with a reducing velocity (km/sec).

-o outfile -- output is redirected to "outfile" instead of taup_curve.gmt
--debug -- enable debugging output
--verbose -- enable verbose output
--version -- print the version
--help -- print this out, but you already know that!

3.8 TauP SetSac

TauP SetSac uses the depth and distance information in SAC (Tull, 1989) file headers to put theoretical arrival
times into the t0–t9 header variables. The header variable for a phase can be specified with by a dash followed
by a number, for instance S-9 puts the S arrival time in t9. If no header is specified then the time will be
inserted in the first header variable not allocated to another phase, starting with 0. If there are no header variables
not already allocated to a phase, then the additional phases will not be added to the header. Note that this does
not refer to times that are already in the SAC file before TauP SetSac is run. They will be overwritten. The ray
parameter, in seconds per radian, is also inserted into the corresponding user0-user9 header.

Note that triplicated phases are a problem as there is only one spot to put a time. For example, in iasp91 S has three
arrivals at 20 degrees but only one can be put into the choosen header. TauP SetSac assumes that the first arrival
is the most important, and uses it. An improved method would allow a phase to have several header variables

User’s Guide 12

associated with it, so that all arrivals could be marked. Currently however, only the first arrival for a phase name
is used.

Warning: TauP SetSac assumes the EVDP header has depth in meters unless the -evdpkm flag is used, in which
case kilometers are assumed. This may be a problem for users that improperly use kilometers for the depth units.
Due to much abuse of the SAC depth header units, a warning message is printed if the depth appears to be in
kilometers, i.e. it is < 1000, and -evdpkm is not used. This can be safely ignored if the event really is less than
1000 meters deep. See the SAC manual (Tull, 1989) for confirmation.

The SAC files must have EVDP and the O marker set. Also, if GCARC or DIST is not set then TauP SetSac can
calculate a distance only if STLA, STLO, EVLA and EVLO are set.

The user should be very careful about previously set header variables. TauP SetSac will overwrite any previously
set t user headers. A future feature may do more careful checking, but the current version makes no effort to
verify that the header is undefined before writing.

If the given filename is a directory, TauP SetSac will recursively look for files within that directory to process.
Thus, a large directory structure of Sac files can be processed easily.

The usage is:

piglet 7>taup_setsac --help
Usage: taup_setsac [arguments]

or, for purists, java edu.sc.seis.TauP.TauP_SetSac [arguments]

Arguments are:
-ph phase list -- comma separated phase list,

use phase-# to specify the sac header,
for example, ScS-8 puts ScS in t8

-pf phasefile -- file containing phases

-mod[el] modelname -- use velocity model "modelname" for calculations
Default is iasp91.

--evdpkm -- sac depth header is in km, default is meters

--debug -- enable debugging output
--verbose -- enable verbose output
--version -- print the version
--help -- print this out, but you already know that!

sacfilename [sacfilename ...]

Ex: taup_setsac -mod prem -ph S-8,ScS-9 wmq.r wmq.t wmq.z
puts the first S arrival in T8 and ScS in T9

3.9 TauP Table

TauP Table creates an ASCII table of arrival times for a range of depths and distances. Its main use is for gener-
ating travel time tables for earthquake location programs such as LOCSAT. The -generic flag generates a flat
table with all arrivals at each depth and distance, one arrival per line. The -locsat flag generates a LOCSAT
style travel time table with only the first arrival of all the phases listed at each distance and depth. Thus, the pro-
gram must be run several times in order to generate files for several phases. Also, both options write to standard
out unless a file is given with the -o flag.

User’s Guide 13

There is a default phase, distance and depth list, but this is easily customizable with the -header option. An ex-
ample LOCSAT style file for use as a header can be generated with taup table -locsat -o example.locsat.
The first three sections specify the phase list, distances and depths to use. After editing, a custom table can be
created with taup table -header example.locsat.

The usage is:

piglet 1>taup_table -help
Usage: taup_table [arguments]

or, for purists, java edu.sc.seis.TauP.TauP_Table [arguments]

Arguments are:
-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases

-mod[el] modelname -- use velocity model "modelname" for calculations
Default is iasp91.

--header filename -- reads depth and distance spacing data
from a LOCSAT style file.

--generic -- outputs a "generic" ascii table
--locsat -- outputs a "locsat" style ascii table

-o outfile -- output is redirected to "outfile"
--debug -- enable debugging output
--verbose -- enable verbose output
--version -- print the version
--help -- print this out, but you already know that!

3.10 TauP Create

TauP Create takes a ASCII velocity model file, samples the model and saves the tau model to a binary file. The
output file holds all information about the model and need only be computed once. It is used by all of the other
tools. There are several parameters controlling the density of sampling. Their values can be set with properties.
See section 3.1, above.

Note that the use of TauP Create is no longer required as the various tools can read velocity models directly and
effectively call TauP Create internally. However, if a model file will be used repeatedly, using a precomputed
.taup file is more efficient.

The usage is:

piglet 8>taup_create -help
TauP_Create starting...
Usage: taup_create [arguments]

or, for purists, java edu.sc.seis.TauP.TauP_Create [arguments]

Arguments are:

To specify the velocity model:
-nd modelfile -- "named discontinuities" velocity file
-tvel modelfile -- ".tvel" velocity file, ala ttimes

User’s Guide 14

--debug -- enable debugging output
--verbose -- enable verbose output
--version -- print the version
--help -- print this out, but you already know that!

modelfile is the ASCII text file holding the velocity model. The -nd format is preferred because the depths,
and thus identities, of the major internal boundaries can be unambiguously determined, making phase name pars-
ing easier. See section 7 for an example. For compatiblity, we support the -tvel format currently used by the
latest ttimes package, (Kennett et al., 1995).

The output will be a file named after the name of the velocity file, followed by .taup. For example

taup create -nd prem.nd

produces prem.taup.

3.11 TauP Console

TauP Console is an instance of the Jython, http://www.jython.org, interpreter with the TauP classes preloaded
along with some helper functionality. This allows python scripting with TauP.

The usage is:

taup_console [scriptfile]

If scriptfile is given, then that file is executed directly, if not then an interactive console is started.

An example of a simple console script is:

crotwell$ taup_console
taup> #
taup> # Set up some parameters
taup> stla = 13
taup> stlo = 14
taup> evla = -6
taup> evlo = -3
taup> evdp = 100
taup> dist = ellipDist(stla, stlo, evla, evlo)
taup> phNameList = [’P’, ’S’, ’p’, ’s’]
taup> taup.sourceDepth = evdp
taup> tMod = loadTauModel(’ak135’)
taup> tModDepth = tMod.depthCorrect(evdp)
taup> phases = []
taup> for phName in phNameList:
... phases.append(SeismicPhase(phName, tModDepth))
...
taup> for phase in phases:
... a = phase.getEarliestArrival(dist)
... if a != None:
... print "%s %3.2f"%(phase.name, a.time)
...
P 317.37
S 576.18
taup>

User’s Guide 15

4 Phase naming in TauP

A major feature of the TauP Toolkit is the implementation of a phase name parser that allows the user to define
essentially arbitrary phases through the earth. Thus, the TauP Toolkit is extremely flexible in this respect since it
is not limited to a pre-defined set of phases. Phase names are not hard-coded into the software, rather the names
are interpreted and the appropriate propagation path and resulting times are constructed at run time. Designing a
phase-naming convention that is general enough to support arbitrary phases and easy to understand is an essential
and somewhat challenging step. The rules that we have developed are described here. Most of phases resulting
from these conventions should be familiar to seismologists, e.g. pP, PP, PcS, PKiKP, etc. However, the uniqueness
required for parsing results in some new names for other familiar phases.

In traditional “whole-earth” seismology, there are 3 major interfaces: the free surface, the core-mantle boundary,
and the inner-outer core boundary. Phases interacting with the core-mantle boundary and the inner core boundary
are easy to describe because the symbol for the wave type changes at the boundary (i.e. the symbol P changes
to K within the outer core even though the wave type is the same). Phase multiples for these interfaces and the
free surface are also easy to describe because the symbols describe a unique path. The challenge begins with
the description of interactions with interfaces within the crust and upper mantle. We have introduced two new
symbols to existing nomenclature to provide unique descriptions of potential paths. Phase names are constructed
from a sequence of symbols and numbers (with no spaces) that either describe the wave type, the interaction a
wave makes with an interface, or the depth to an interface involved in an interaction.

1. Symbols that describe wave-type are:

P compressional wave, upgoing or downgoing, in the crust or mantle
p strictly upgoing P wave in the crust or mantle
S shear wave, upgoing or downgoing, in the crust or mantle
s strictly upgoing S wave in the crust or mantle
K compressional wave in the outer core
I compressional wave in the inner core
J shear wave in the inner core

2. Symbols that describe interactions with interfaces are:

m interaction with the moho
g appended to P or S to represent a ray turning in the crust
n appended to P or S to represent a head wave along the moho
c topside reflection off the core mantle boundary
i topside reflection off the inner core outer core boundary
ˆ underside reflection, used primarily for crustal and mantle interfaces
v topside reflection, used primarily for crustal and mantle interfaces
diff appended to P or S to represent a diffracted wave along the core mantle boundary
kmps appended to a velocity to represent a horizontal phase velocity (see 10 below)

3. The characters p and s always represent up-going legs. An example is the source to surface leg of the phase
pP from a source at depth. P and S can be turning waves, but always indicate downgoing waves leaving
the source when they are the first symbol in a phase name. Thus, to get near-source, direct P-wave arrival
times, you need to specify two phases p and P or use the “ttimes compatibility phases” described below.
However, P may represent a upgoing leg in certain cases. For instance, PcP is allowed since the direction
of the phase is unambiguously determined by the symbol c, but would be named Pcp by a purist using our
nomenclature.

4. Numbers, except velocities for kmps phases (see 10 below), represent depths at which interactions take
place. For example, P410s represents a P-to-S conversion at a discontinuity at 410km depth. Since the
S-leg is given by a lower-case symbol and no reflection indicator is included, this represents a P-wave
converting to an S-wave when it hits the interface from below. The numbers given need not be the actual
depth, the closest depth corresponding to a discontinuity in the model will be used. For example, if the time
for P410s is requested in a model where the discontinuity was really located at 406.7 kilometers depth,

User’s Guide 16

the time returned would actually be for P406.7s. The code “taup time” would note that this had been
done. Obviously, care should be taken to ensure that there are no other discontinuities closer than the one of
interest, but this approach allows generic interface names like “410” and “660” to be used without knowing
the exact depth in a given model.

5. If a number appears between two phase legs, e.g. S410P, it represents a transmitted phase conversion, not
a reflection. Thus, S410P would be a transmitted conversion from S to P at 410km depth. Whether the
conversion occurs on the down-going side or up-going side is determined by the upper or lower case of the
following leg. For instance, the phase S410P propagates down as an S, converts at the 410 to a P, continues
down, turns as a P-wave, and propagates back across the 410 and to the surface. S410p on the other hand,
propagates down as a S through the 410, turns as an S, hits the 410 from the bottom, converts to a p and then
goes up to the surface. In these cases, the case of the phase symbol (P vs. p) is critical because the direction
of propagation (upgoing or downgoing) is not unambiguously defined elsewhere in the phase name. The
importance is clear when you consider a source depth below 410 compared to above 410. For a source depth
greater than 410 km, S410P technically cannot exist while S410p maintains the same path (a receiver side
conversion) as it does for a source depth above the 410.

The first letter can be lower case to indicate a conversion from an up-going ray, e.g. p410S is a depth
phase from a source at greater than 410 kilometers depth that phase converts at the 410 discontinuity. It is
strictly upgoing over its entire path, and hence could also be labeled p410s. p410S is often used to mean
a reflection in the literature, but there are too many possible interactions for the phase parser to allow this.
If the underside reflection is desired, use the pˆ410S notation from rule 7.

6. Due to the two previous rules, P410P and S410S are over specified, but still legal. They are almost
equivalent to P and S, respectively, but restrict the path to phases transmitted through (turning below) the
410. This notation is useful to limit arrivals to just those that turn deeper than a discontinuity (thus avoiding
travel time curve triplications), even though they have no real interaction with it.

7. The characters ˆ and v are new symbols introduced here to represent bottom-side and top-side reflections,
respectively. They are followed by a number to represent the approximate depth of the reflection or a letter
for standard discontinuities, m, c or i. Reflections from discontinuities besides the core-mantle boundary, c;
or inner-core outer-core boundary, i, must use the ˆ and v notation. For instance, in the TauP convention,
pˆ410S is used to describe a near-source underside reflection.

Underside reflections, except at the surface (PP, sS, etc.), core-mantle boundary (PKKP, SKKKS, etc.), or
outer-core-inner-core boundary (PKIIKP, SKJJKS, SKIIKS, etc.), must be specified with the ˆ notation.
For example, Pˆ410P and PˆmP would both be underside reflections from the 410km discontinuity and
the Moho, respectively.

The phase PmP, the traditional name for a top-side reflection from the Moho discontinuity, must change
names under our new convention. The new name is PvmP or Pvmp while PmP just describes a P-wave that
turns beneath the Moho. The reason the Moho must be handled differently from the core-mantle boundary is
that traditional nomenclature did not introduce a phase symbol change at the Moho. Thus, while PcP makes
sense since a P-wave in the core would be labeled K, PmP could have several meanings. The m symbol just
allows the user to describe phases interaction with the Moho without knowing its exact depth. In all other
respects, the ˆ -v nomenclature is maintained.

8. Currently, ˆ and v for non-standard discontinuities are allowed only in the crust and mantle. Thus there
are no reflections off non-standard discontinuities within the core, (reflections such as PKKP, PKiKP and
PKIIKP are still fine). There is no reason in principle to restrict reflections off discontinuities in the core,
but until there is interest expressed, these phases will not be added. Also, a naming convention would have
to be created since “p is to P” is not the same as “i is to I”.

9. Currently there is no support for PKPab, PKPbc, or PKPdf phase names. They lead to increased algorith-
mic complexity that at this point seems unwarranted. Currently, in regions where triplications develop, the
triplicated phase will have multiple arrivals at a given distance. So, PKPab and PKPbc are both labeled
just PKP while PKPdf is called PKIKP.

User’s Guide 17

10. The symbol kmps is used to get the travel time for a specific horizontal phase velocity. For example, 2kmps
represents a horizontal phase velocity of 2 kilometers per second. While the calculations for these are trivial,
it is convenient to have them available to estimate surface wave travel times or to define windows of interest
for given paths.

11. As a convenience, a ttimes phase name compatibility mode is available. So ttp gives you the phase list
corresponding to P in ttimes. Similarly there are tts, ttp+, tts+, ttbasic and ttall.

User’s Guide 18

5 Creating and Saving Velocity Models

5.1 Velocity Model Files

There are currently two variations of velocity model files that can be read. Both are piecewise linear between
given depth points. Support for cubic spline velocity models would be useful and is planned for a future release.

The first format is that used by the most recent ttimes codes (Kennett et al., 1995), .tvel. This format has two
comment lines, followed by lines composed of depth, Vp, Vs and density, all separated by whitespace. TauP
ignores the first two lines of this format and reads the remaining lines.

The second format is based on the format used by Xgbm, (Davis and Henson, 1993a; Davis and Henson, 1993b).
It is referred to here as the .nd format for “named discontinuities.” Its biggest advantage is that it can specify the
location of the major boundaries and this makes it the preferred format. The file consists of two types of lines,
those that specify velocity at a depth, and those that specify the name of a discontinuity.

The first type of line has between 3 and 6 numbers on a line separated by whitespace. They are, in order, depth in
kilometers to the sample point, P velocity in kilometers per second, S velocity in kilometers per second, density
in grams per cubic centimeter, Qp attenuation for compressional waves and Qs attenuation for shear waves. Only
depth, Vp and Vs are required. The remaining parameters, while not needed for travel time calculations, are
included to allow the model to be used for other purposes in the future. The model is assumed to be linear between
given depths and repeated depths are used to represent discontinuities.

The second type of line within the .nd format specifies one of the three major internal boundaries, mantle for the
crust-mantle boundary, outer-core for the outer core-mantle boundary, or inner-core for the inner core-outer core
boundary. These labels are placed on a line by themselves between the two lines representing the sample points
above and below the depth of the discontinuity. These help to determine where a particular phase propagates. For
instance, in a model that has many crustal and upper mantle layers, from which discontinuity does the phase PvmP
reflect? Explicit labeling eliminates potential ambiguity.

One further enhancement to these model file formats is the support for comments embedded within the model
files. As in shell scripting, everything after a # on a line is ignored. In addition, C style /* ... */ and C++
style // ... comments are recognized.

A very simple named discontinuities model file might look like this:

/* below is a simple named discontinuities model. */
0.0 5.0 3.0 2.7
20 5.0 3.0 2.7
20 6.5 3.7 2.9
33 6.5 3.7 2.9
mantle # the word "mantle" designates that this is the moho
33 7.8 4.4 3.3
410 8.9 4.7 3.5
410 9.1 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core # "outer-core" designates that this is the core mantle boundary
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core # "inner-core" makes this the inner-outer core boundary
5149.5 11 3.5 12.7
6371 11.3 3.7 13

User’s Guide 19

5.2 Using Saved Tau Models

There are three ways of finding a previously generated model file. First, as a standard model as part of the
distribution. Second, a list of directories and jar files to be searched can be specified with the taup.model.path
property. Lastly, the path to the actual model file may be specified. TauP searches each of these places in order
until it finds a model that matches the name.

1. Standard Model.

TauP first checks to see if the model name is associated with a standard model. Several standard models are
included within the distributed jar file. They include iasp91 (Kennett and Engdahl, 1991), prem (Dziewon-
ski and Anderson, 1984), ak135 (Kennett, Engdahl, and Buland, 1995), jb (Jeffreys and Bullen, 1940),
1066a (Gilbert and Dziewonski, 1975), 1066b (Gilbert and Dziewonski, 1975), pwdk (Weber and Davis,
1990), sp6 (Morelli and Dziewonski, 1993) and herrin (Herrin, 1968). Lastly, we have included qdt, which
is a coarsely sampled version of iasp91 (Kennett and Engdahl, 1991). It is samller, and thus loads quicker,
but has significantly reduced accuracy. We will consider adding other models to the distribution if they are
of wide interest. They are included within the distribution jar file but taup can locate them with just the
model name.

2. Within the taup.model.path property.

Users can create custom models, and place the stored models in a convenient location. If the taup.model.path
property includes those directories or jar files, then they can be located. The search is done in the order
of taup.model.path until a model matching the model name is found. While taup.model.path is a Java
property, the shell scripts provided translate the environment variable TAUPPATH into this property. The
user generally need not be aware of this fact except when the tools are invoked without using the provided
shell scripts. A more desirable method is to set the taup.model.path in a properties file. See section 3.1 for
more details.

The taup.model.path property is constructed in the manner of standard Java CLASSPATH which is itself
based loosely on the manner of the UNIX PATH. The only real differences between CLASSPATH and PATH
are that a jar file may be placed directly in the path and the path separator character is machine dependent,
UNIX is ‘:’ but other systems may vary.

The taup.model.path allows you to have directories containing saved model files as well as jar files of
models. For instance, in a UNIX system using the c shell, you could set your TAUPPATH to be, (all one
line):

setenv TAUPPATH /home/xxx/MyModels.jar:/home/xxx/ModelDir:
/usr/local/lib/localModels.jar

or you could place a line in the .taup file in your home directory that accomplished the same thing, again
all one line:

taup.model.path=/home/xxx/MyModels.jar:/home/xxx/ModelDir:
/usr/local/lib/localModels.jar

If you place models in a jar, TauP assumes that they are placed in a directory called Models before they are
jarred. For example, you might use taup create to create several taup models in the Models directory and
then create a jar file.

jar -cf MyModels.jar Models

Including a “.” for the current working directory with the taup.model.path is not necessary since we always
check there, see 3 below, but it may be used to change the search order.

3. The last place TauP looks is for a model file specified on the command line. So, if you generate new-
Model.taup and want to get some times, you can just say: taup time -mod newModel.taup or even

User’s Guide 20

just taup time -mod newModel as TauP can add the taup suffix if necessary. A relative or absolute
pathname may precede the model, e.g. taup time -mod ../OtherDir/newModel.taup. New in
version 2.0 is the ability of the tools to load a velocity model directly and handle the create functionality
internall, so in addition to .taup files, the .nd and .tvel model files can be loaded if there is not a .taup file
found. Note that there is extra work involved in processing the velocity file, and so frequently used models
should still be converted using TauP Create to avoid reprocessing them each time the tool starts.

User’s Guide 21

6 Programming Interface

In addition to the command line interface, there are three ways to access the toolkit from within other programs.
The most straightforward is through Java. Using Jacl provides a very nice way to write scripts that use the tools
without repeatedly starting up the Java virtual machine and reloading models. Lastly, there is a C language
interface, but it is a bit less friendly. Descriptions of all three, with example programs are below.

6.1 Java

The TauP package should be easily used by future Java programs. An example is given illustrating the basics of
using the package to generate travel times.

First, instantiate a TauP Time object. This provides methods for generating and using travel times and should be
sufficient for most purposes. However, in order to actually generate anything useful, the TauP Time object needs
a TauModel. It can be loaded within the constructor for TauP Time as a TauModel or with the model name. It can
changed later using either the TauP Time.setTauModel(TauModel) method of TauP Time, or by passing
the modelname to TauP Time.loadTauModel(String). The later is likely easier, and has the advantage
of searching for the model in the distribution jar file, the locations in the taup.model.path property, and the current
directory.

TauP Time timeTool = new TauP Time("mymodel");

In addition to the TauModel, a collection of phases is also needed. Again, there are several ways of accomplish-
ing this. parsePhaseList(String) is likely the easiest method. A String is passed with the phase names
separated by commas and the phases are extracted and appended. Phases can also be input more directly with
setPhaseNames(String[]) , which sets the phases to be those in the array, and appendPhaseName(String)
which appends a phase to the list. Note that these methods do not do any checking to assure the names are valid
phases, this is done at a later stage. Of additional interest are clearPhaseNames() which deletes all current
phase names, and getPhaseNames() which returns an array of Strings with the phase names.

timeTool.parsePhaseList("P,Pdiff,S,Sdiff,PKP,SKS");

The next step is to correct the TauModel for the source depth. The TauModel is created with a surface source,
but can be corrected for a source at depth, given in kilometers, with the depthCorrect(double) method.
In addition, if a correction was actually needed, it calls recalcPhases() which verifies that the times and
distances for the phases in the phase list are compatible with the current model and depth. recalcPhases() is
also called by calculate() in case changes were made to the list of phase names.

timeTool.depthCorrect(100.0);

It remains only to calculate arrivals for a particular distance using the calculate(double) method, which
takes an angular distance in degrees. The arrivals are stored as Arrival objects, which contain time, dist,
rayParam, sourceDepth, and name fields. The Arrivals can be accessed through either the getArrival(int)
method which returns the ith arrival, or the getArrivals() method which returns an array of Arrivals. Of ad-
ditional interest is the getNumArrivals() method that returns the number of arrivals.

timeTool.calculate(40);
Arrival[] arrivals = timeTool.getArrivals();
for (int i=0; i<arrivals.length; i++) {

System.out.println(arrivals[i].getName+" arrives at "+
(arrivals[i].getDist*180.0/Math.PI)+" degrees after "+
arrivals[i].getTime+" seconds.");

}

It is important to realize that all internal angular distances are stored as radians, hence the conversion, and times
in seconds. This also means that the ray parameters are stored as seconds per radian.

User’s Guide 22

6.2 Jacl

One of the problems with Java based tools is that there is overhead associated with starting a Java program due
to the fact that the virtual machine must first be started. While with normal interactive computing this is not such
a large problem, it can become very wastful when repeated calling a tool from within a script. Significant time
savings can be had if the tool and its associated virtual machine can be kept alive for the duration of the script.
Jacl, a Java implementation of the popular Tool Command Language or Tcl, makes writing scripts that use the
TauP Toolkit easy, and allows one instance of both the virtual machine as well as the tool to remain active for the
whole script. You may download jacl from http://www.scriptics.com/java.

Jacl allows a script to create Java objects, call any public method of those objects and manipulate their attributes.
Thus, creating a script to do many similar calcuations or a custom application that makes these tools usable in
the way you want is as easy as writing a tcl script. We present a brief walkthrough of a Jacl script that calculates
pierce points for numerous station event pairs.

The first three lines of the script should start up jacl. The second line is a bit of trickery, it hides the third line from
jacl while allowing sh to see it. Jacl takes the backslash to be a line continuation marker, and therefore accepts
the third line as part of the comment started on the second line. This just makes it easier to start up jacl without
having to know the exact path in advance.

#!/bin/sh
\
exec jacl $0 $*

Next, we will set up latitudes and longitudes for our stations and events. This was modified from a script that read
from a CSS database, but in order to keep the script self contained, we have hardwired it here.

set slat(0) 35
set slon(0) -5
set elat(0) 125
set elon(0) 5
set edepth(0) 100
set elat(1) -10
set elon(1) 110
set edepth(1) 100
set elat(2) 40
set elon(2) 140
set edepth(2) 200
set elat(3) 65
set elon(3) -5
set edepth(3) 10

Now we start up the pierce tool with the prem model and add the phases we are interested in. We will only do P
and S in PREM for simplicity.

set taup [java::new [list edu.sc.seis.TauP.TauP_Pierce String] "prem"]
$taup clearPhaseNames
$taup {parsePhaseList java.lang.String} "P,S"

Here we get, and then loop over, all the discontinuities in the model in order to find the one closest to 400
kilometers depth.

set disconArray [$taup getDisconDepths]
set maxDiff 99999999

User’s Guide 23

set bestDepth 0
for {set i 0} {$i < [$disconArray length]} {incr i} {

set depth [$disconArray get $i]
if { [expr abs($depth - 400)] < $maxDiff} {

set maxDiff [expr abs($depth - 400)]
set bestDepth $depth

}
}

Loop over all events and stations and output the pierce point at the 400 kilometer discontinuity. We use the
getLastPiercePoint(depth) method as we want the receiver side pierce point. If we wanted the source side point
we could have used the getFirstPiercePoint(depth) method.

for {set eventIndex 0} {$eventIndex < [array size elat]} {incr eventIndex} {
$taup depthCorrect $edepth($eventIndex)
for {set staIndex 0} {$staIndex < [array size slat]} {incr staIndex} {

set gcarc [java::call edu.sc.seis.TauP.SphericalCoords distance \
$elat($eventIndex) $elon($eventIndex) \
$slat($staIndex) $slon($staIndex)]

set az [java::call edu.sc.seis.TauP.SphericalCoords azimuth \
$elat($eventIndex) $elon($eventIndex) \
$slat($staIndex) $slon($staIndex)]

$taup calculate $gcarc
set numArrivals [$taup getNumArrivals]

if {$numArrivals == 0} {
puts "No arrivals for event $eventIndex"

}
for {set k 0} {$k< $numArrivals} {incr k} {

set OneArrival [$taup getArrival $k]
set name [$OneArrival getName]

if [catch \
{set OnePierce [$OneArrival getLastPiercePoint $bestDepth] }] {

puts "$name doesn’t pierce $bestDepth for event $eventIndex"
continue

}

set dist [$OnePierce getDist]
set dist [expr $dist * (180./3.14159)]
set plat [java::call edu.sc.seis.TauP.SphericalCoords latFor \

$elat($eventIndex) $elon($eventIndex) $dist $az]
set plon [java::call edu.sc.seis.TauP.SphericalCoords lonFor \

$elat($eventIndex) $elon($eventIndex) $dist $az]
puts [format "(%-7.3f, %-7.3f) $name from event number $eventIndex" \

$plat $plon]
}

}
}

And here is the output:

piglet 56>./pierce.jacl
No arrivals for event 0

User’s Guide 24

(-7.218 , 36.679) P from event number 1
(-7.214 , 36.676) S from event number 1
(-2.185 , 35.266) P from event number 2
(-2.205 , 35.264) S from event number 2
(-3.262 , 34.492) P from event number 3
(-3.142 , 34.457) S from event number 3

This script, along with another simple travel time script, is included in the distribution in the jacl subdirectory.

6.3 C

A C language interface to the TauP package is provided. A shared library libtaup.so, provides access to the core
functionality for generating travel times. An example program using these interface routines is also provided,
gettimes.c.

A word of warning, nothing in Java is as frought with peril as JNI. This part of the TauP Toolkit is the hardest
to get working. It is recommended that you be fluent in both C and Java and have a high pain tolerance before
attempting to integrate TauP into a C program. You have been warned!

The native interface is distributed as C source code that you must compile on your local machine. A makefile is
provided to generate a shared library and an example code to call the library. The makefile was created for use
under Solaris, but doesn’t do anything particularly special, and should be easily modifiable for other operating
systems.

Of course, the system must be able to find this library, as well as the Java libraries. Under Solaris, this can be
accomplished with the LD LIBRARY PATH environment variable. Other systems may vary. The CLASSPATH
environment variable must also contain the taup.jar file as well as the default java jar files. Note that under Java1.2
the command line tools may work fine while the C interface has problems. This is due to the java executable
finding the standard files without the CLASSPATH. The C interface bypasses the executable, and so does not
benefit from this. Properly setting the CLASSPATH is thus even more important for calling Java from C.

The current C interface only provides method calls for the most basic operations for getting travel times. If less
common methods need to be called then a quick look at the source code in the native directory should be sufficient
to create new hooks into those methods.

The state of the travel time calculator is preserved from call to call within a TauPStruct structure. This contains
references to the java virtual machine, each of the method calls and the current model. This structure is always
the first argument to all of the method calls. While I believe this is the least complicated style of interaction, it
is not particularly memory or processor efficient for uses involving more than one travel time calculator active
simultaneously. Primarily this is due to having more than one java virtual machine running at the same time. Still,
it is a good example of how C can interact with Java.

The currently implemented method calls are:

TauPInit initializes the java virtual machine and properly fills in the TauPStruct passed as the first argument. The
second argument is the name of the model to be used. The method signature is
int TauPInit(TauPStruct *taupptr, char *modelName) ;

TauPSetDepth sets the source depth within the model. A initialized TauPStruct is passed as the first argument,
with the source depth passed as the second. With the exception of creating a new model, this is the most
CPU intensive operation. The method signature is
int TauPSetDepth(TauPStruct taup, double depth) ;

TauPClearPhases clears any previously added phases. This should be followed by a call to TauPAppendPhases,
below, to add new phases. An initialized TauPStruct is passed as the first argument. The method signature
is
int TauPClearPhases(TauPStruct taup) ;

User’s Guide 25

TauPAppendPhases appends new phases for calculation. An initialized TauPStruct is passed as the first argument
and the phase names are passed as a comma or space separated string in the second argument. All of the
phase names that can be used in the interactive code can be used here. Also, duplicates are checked for and
eliminated before being added. The method signature is
int TauPAppendPhases(TauPStruct taup, char *phaseString) ;

TauPCalculate calculates all arrivals for all of the current phases for the distance specified in the second argu-
ment. An initialized TauPStruct is passed as the first argument. The method signature is
int TauPCalculate(TauPStruct taup, double degrees) ;

TauPGetNumArrivals returns the number of arrivals found with the last call to TauPCalculate, above. A negative
number indicates an error. An initialized TauPStruct is passed as the first argument. The method signature
is
int TauPGetNumArrivals(TauPStruct taup) ;

TauPGetArrival returns the ith arrival found with the last call to TauPCalculate, above. The arrival is returned
as a jobject, which is mainly useful if it will be used as an argument for another java method call. NULL is
returned if an error occurs. An initialized TauPStruct is passed as the first argument. The method signature
is
jobject TauPGetArrival(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalName returns the name of the ith arrival found with the last call to TauPCalculate, above, as a
character pointer. An initialized TauPStruct is passed as the first argument and the arrival number is passed
as the second. NULL is returned if there is an error. The method signature is
char * TauPGetArrivalName(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalPuristName returns the purist’s version of the name of the ith arrival found with the last call
to TauPCalculate, above, as a character pointer. The puris’s name replaces depths with the true depth of
interfaces in the phase name, for example Pv410P might really be Pv400P. An initialized TauPStruct is
passed as the first argument and the arrival number is passed as the second. NULL is returned if there is an
error. The method signature is
char * TauPGetArrivalPuristName(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalTime returns the travel time of the ith arrival found with the last call to TauPCalculate, above.
An initialized TauPStruct is passed as the first argument and the arrival number is passed as the second. A
negative number is returned if there is an error. The method signature is
double TauPGetArrivalTime(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalDist returns the travel distance of the ith arrival found with the last call to TauPCalculate, above.
An initialized TauPStruct is passed as the first argument and the arrival number is passed as the second. A
negative number is returned if there is an error. The method signature is
double TauPGetArrivalDist(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalRayParam returns the ray parameter of the ith arrival found with the last call to TauPCalculate,
above. An initialized TauPStruct is passed as the first argument and the arrival number is passed as the
second. A negative number is returned if there is an error. The method signature is
double TauPGetArrivalRayParam(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalSourceDepth returns the source depth of the ith arrival found with the last call to TauPCalculate,
above. An initialized TauPStruct is passed as the first argument and the arrival number is passed as the
second. A negative number is returned if there is an error. The method signature is
double TauPGetArrivalSourceDepth(TauPStruct taup, int arrivalNum) ;

TauPDestroy destroys the java virtual machine and frees the used memory. An initialized TauPStruct is passed
as the first argument. A nonzero error is returned if there is an error. The method signature is
int TauPDestroy(TauPStruct taup) ;

User’s Guide 26

7 Examples

Here is a walk through of a use of the tools on a UNIX system.

7.1 Velocity Model Files

First, we want to create a model. There are several models contained within the TauP distribution, but for com-
pleteness we will create a new one from scratch.

A very simple model file might look like this:

0.0 5.0 3.0 2.7
20 5.0 3.0 2.7
20 6.5 3.7 2.9
33 6.5 3.7 2.9
mantle
33 7.8 4.4 3.3
410 8.9 4.7 3.5
410 9.1 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
1000 11.5 6.4 4.6
2000 12.9 6.9 5.1
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
3500 9.0 0.0 10.8
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
5500 11.1 3.6 12.9
6371 11.3 3.7 13

Note that we have chosen the “named discontinuities” format so that we could specify the location of the major
boundaries. The file consists of two types of lines, those that specify velocity at a depth, and those that specify the
name of a discontinuity. See section 5.1 for more details.

7.2 Creating the Model

If we put this into a file called “simpleMod.nd” then we can run taup create to create a model sampling. We
use the -verbose option to get some additional output. In particular, it outputs the radius to the surface for this
model. Having an incorrect radius, which could happen for instance if the last line of the model file was lost, will
generate incorrect times for phases that otherwise appear fine. This can be a difficult error to track down after the
fact because there is nothing wrong with the model, it is just not what was intended. As they say, “garbage in,
garbage out.”

piglet 10>taup_create -nd simpleMod.nd -verbose
TauP_Create starting...
filename =./simpleMod.nd
Done reading velocity model.
Radius of model simpleMod is 6371.0

User’s Guide 27

Parameters are:
taup.create.minDeltaP = 0.1 sec / radian
taup.create.maxDeltaP = 8.0 sec / radian
taup.create.maxDepthInterval = 115.0 kilometers
taup.create.maxRangeInterval = 1.75 degrees
taup.create.maxInterpError = 0.03 seconds
taup.create.allowInnerCoreS = true
Slow model time=39714 801 P layers,907 S layers
T model time=7480
Done Saving ./simpleMod.taup
Done!
Done!
piglet 11>ls
simpleMod.nd simpleMod.taup

The file simpleMod.taup contains all of the information about the model. This process needs to be done only
once for each velocity model. The times appearing in the output are in milliseconds, and do not reflect the startup
time for Java.

7.3 Travel Times

Now that we have the model sampled, computing travel times is easy. We will use taup time to get the travel times
for some familiar phases, P, S, PcP, ScS, SKS, sS, and SS in our simple model for a 143.2 kilometer deep source
and at a distance of 75 degrees. We use the “-mod” command line flag to specify the model, and then do the rest
after it starts.

First taup time reads a standard Java Properties file, “.taup”, that it finds in my home directory. See section 3.1
for more details. If there are phases you are interested in frequently, or model you use often, or source depth, then
you can put them in this file as your defaults. Then we enter a depth for the source, 143.2 kilometers, using the h
option. By default, the model is for a surface source.

Some phase names have been read in from the file, but we want to specify our own phase list, so we use the ‘c’
option to clear the phases and are prompted to enter the new phases. Enter them separated by commas or spaces.
After that we just need to enter the distance, 75 degrees. The arrivals are printed as distance, depth, phase name,
time and then ray parameter. The last two entries represent a “purists” view of the distance and phase name. For
instance, PKKP travels the long way around the earth, and so the true distance traveled is not the event to station
distance. The purist’s view of the name is to show the difference between the true depths of discontinuities and
the depth specified in the phase name. For instance, Pv400P in our simple model is really a reflection off of the
discontinuity at 410 kilometers depth. The purist’s name reflects this and is preceded by an asterisk to make the
difference easier to notice. The distance is repeated to make it easier to parse the output from within scripts.

piglet 4>taup_time -mod simpleMod
Enter:
h for new depth
r to recalculate
p to append phases,
c to clear phases
l to list phases
s for new station lat lon
e for new event lat lon
a for new azimuth
b for new back azimuth
m for new model or
q to quit.

User’s Guide 28

Enter Distance or Option [hrpclseabmq]: h
Enter Depth: 143.2
Enter Distance or Option [hrpclseabmq]: c
Enter phases (ie P,p,PcP,S): P,S,PcP,ScS,SKS,sS,SS,PKKP
Enter Distance or Option [hrpclseabmq]: 75

Model: simpleMod
Distance Depth Phase Travel Ray Param Purist Purist

(deg) (km) Name Time (s) p (s/deg) Distance Name
--

75.0 143.2 P 686.33 5.721 75.0 = P
75.0 143.2 PcP 700.51 4.312 75.0 = PcP
75.0 143.2 S 1263.17 11.040 75.0 = S
75.0 143.2 SKS 1293.35 7.283 75.0 = SKS
75.0 143.2 ScS 1298.74 8.135 75.0 = ScS
75.0 143.2 sS 1326.73 11.152 75.0 = sS
75.0 143.2 SS 1571.74 14.640 75.0 = SS

Enter Distance or Option [hrpclseabmq]: q

We could also have done this same example by just using the command line options.

piglet 5>taup_time -mod simpleMod -h 143.2 -deg 75 -ph P,S,PcP,ScS,SKS,sS,SS,PKKP

Model: simpleMod
Distance Depth Phase Travel Ray Param Purist Purist

(deg) (km) Name Time (s) p (s/deg) Distance Name
--

75.0 143.2 P 686.33 5.721 75.0 = P
75.0 143.2 PcP 700.51 4.312 75.0 = PcP
75.0 143.2 S 1263.17 11.040 75.0 = S
75.0 143.2 SKS 1293.35 7.283 75.0 = SKS
75.0 143.2 ScS 1298.74 8.135 75.0 = ScS
75.0 143.2 sS 1326.73 11.152 75.0 = sS
75.0 143.2 SS 1571.74 14.640 75.0 = SS

7.4 Pierce Points

Now, where are the turning points for these rays? We can run taup pierce with the “-turn” flag and find out. Lets
specify the parameters on the command line. The output is distance in degrees followed by depth in kilometers.
Note that SS has two turning points.

piglet 7>taup_pierce -mod simpleMod -h 143.2 -deg 75 \
? -ph P,S,PcP,ScS,SKS,sS,SS,PKKP -turn
> P at 686.33 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.

37.23 2110.32
> S at 1263.17 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.

37.20 2005.24
> PcP at 700.51 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.

37.30 2891.00
> ScS at 1298.74 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.

37.29 2891.00

User’s Guide 29

> SKS at 1293.35 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.
37.31 2975.11

> sS at 1326.73 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.
37.81 1971.17

> SS at 1571.74 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.
18.09 1001.76
56.03 1001.76

7.5 Path

Perhaps now we should make a plot of the paths. Lets use only command line options and send the output to the
file “simpleModPaths.gmt” instead of the default “taup path.gmt”.

piglet 8>taup_path -mod simpleMod -h 143.2 -deg 75 \
? -ph P,S,PcP,ScS,SKS,sS,SS,PKKP \
? -o simpleModPaths.gmt -gmt
piglet 9>ls
simpleMod.taup simpleMod.nd simpleModPaths.gmt
piglet 10>sh simpleModPaths.gmt
piglet 11>ls
simpleMod.taup simpleModPaths.ps
simpleMod.nd simpleModPaths.gmt

Now we have a Postscript file, simpleModPaths.ps, that we can look at or print. Notice that we used the -gmt flag
so that the output is a complete GMT script. If you don’t use -gmt, then the output is just the XY points, which
might be later used by another script. Of course, this only works if you have GMT installed.

7.6 Travel Time Curves

If we want to see the travel time curves for these phases, we can do that using taup curve. It works very similarly
to taup path except that we don’t need to specify a distance.

piglet 12>taup_curve -mod simpleMod -h 143.2 -ph P,S,PcP,ScS,SKS,sS,SS,PKKP \
? -o simpleModCurves.gmt -gmt
piglet 13>ls
simpleModCurves.gmt simpleMod.nd simpleModPaths.gmt
simpleMod.taup simpleModPaths.ps
piglet 14>sh simpleModCurves.gmt
piglet 15>ls
simpleMod.nd simpleModCurves.gmt simpleModPaths.gmt
simpleMod.taup simpleModCurves.ps simpleModPaths.ps

Again we have a Postscript file to view. Both of these commands generate scripts that are ok for a quick look, but
you will almost certainly want to modify them for any important use.

User’s Guide 30

A Installing

The installation for TauP under UNIX is quite simple. And with Java’s platform independence, the package should
be usable on a Mac or Windows machine.

1. Install a Java 1.6 or better virtual machine. If your system already has Java 1.6 or better installed then you
can skip to the next step. You can test this with “java -version”. If it isn’t there or the version is less than 1.6
you need to get and install Java. Most operating systems come with a version of Java, and so this should not
be an issue. If you do need to download Java, point your browser to http://www.oracle.com/technetwork/java
and download and install the Java SE Development Kit for Linux or Windows. OSX for Macintosh should
already have this preinstalled.

2. Download TauP.X.X.X.tar.gz or TauP.X.X.X.zip. Make sure to get the most recent version, replacing the
X’s in the file name. They can be found at

http://www.seis.sc.edu/TauP

3. Unpack the distribution.
gunzip TauP.X.X.X.tar.gz
tar -xvf TauP.X.X.X.tar
or
jar -xvf TauP.X.X.X.zip
or unzip TauP.X.X.X.zip This will create a directory called TauP-X.X.X. Inside will be the files
and directories listed in chapter 2, Distribution.

4. Put this directory someplace. It really doesn’t matter where, although a central place might make admin-
istration easier, /usr/local or /usr/local/share are good choices. If you don’t have superuser privileges then
your home directory is fine.

Previous versions of TauP recommended installing taup.jar as a standard extension by placing the jar file
into the jre/lib/ext subdirectory of your java installation. We no longer believe this is a good practice, and if
you have done this in the past you will need to remove the old version in order to prevent a conflict.

5. Set the location of the TauP directory in your TAUP HOME environment variable. This should be done
in your .cshrc or .login. For instance, if you put Taup-1.2.0 in /usr/local/share, then you could set the
TAUP HOME to be:

setenv TAUP_HOME /usr/local/share/TauP-1.2.0
for csh/tcsh or for bash
export TAUP_HOME=/usr/local/share/TauP-1.2.0

Please make sure that an old version of taup.jar is not on your CLASSPATH as this will cause a conflict.

6. Put the bin directory of the distribution directory in your PATH environment variable,

${TAUP_HOME}/bin

for instance. These wrapper scripts are not essential, but they cut down on typing. They are in the bin
directory of the distribution and are simple UNIX sh scripts and bat files for windows.

7. Lastly, you may need to either source your .login and .cshrc files or execute the rehash command to make
the shell reevaluate the contents of your PATH.

That’s it. If you have problems or encounter bugs, please mail them to me. Please try to be as specific as possible.
I am also interested in ideas for additional features that might make this a more useful program. Of course, I can
make no promises, but I would be glad to hear about them.

I can be reached via email at crotwell@seis.sc.edu.

User’s Guide 31

B Troubleshooting

There are a few idiosyncrocies about the codes and Java in general that you may run into.

1. Out of memory errors. Java’s default maximum memory for most uses should be fine, but some very
complicated models using a large number of phases may exceed this limit. A simple fix is to change
the maximum memory to be a larger amount. The -Xmx command line argument to the java command
does this. So, to set the maximum amount of memory to 128 megabytes you could say java -Xmx128m
edu.sc.seis.TauP.TauP Path. For convenience you may wish to make this change more permanent
by adding it to the scripts, i.e. taup time, etc. Also note that the m at the end specifies megabytes, if you
omit it, then the value is 128 bytes, which is probably not what you want.

2. Garbled jar files. Care should be taken with the jar files when transferring them from one operating system
to another. Certain file transfer utilities make an attempt to fix text files by changing RETURN LINEFEED
sequences to just LINEFEED or just RETURN or vice versa. This is useful for real text files, but dangerous
for jar files. I have noticed this when transferring files between UNIX and Macintosh, and it likely can
happen between any two operating systems with differing end of line identifiers. Using binary mode for ftp
transactions is likely wise.

3. Trouble with bat files. I don’t use windows and so I do not know if the bat files are really useful or not. If
you find a better method, I would be happy to include it.

User’s Guide 32

References
Buland, R. and C. H. Chapman (1983). The Computation of Seismic Travel Times, Bull. Seism. Soc. Am. 73(5),

1271–1302.

Crotwell, H. P., T. J. Owens, and J. Ritsema (1998). The TauP ToolKit: Flexible Seismic Travel-Time and
Raypath Utilities, Seismological Research Letters. In Preperation.

Davis, J. P. and I. H. Henson (1993a). Development of an X-Windows tool to compute Gaussian bean synthetic
seismograms. Technical Report TGAL-93-03, Phillip Laboratory, Hancom AFB, MA.

Davis, J. P. and I. H. Henson (1993b). User’s Guide to Xgbm: An X-Windows System to compute Gaussian bean
synthetic seismograms (1.1 ed.). Alexandria, VA: Teledyne Geotech Alexandria Laboratories.

Dziewonski, A. M. and D. L. Anderson (1984). Structure, elastic and rheological properties and density of
the earth’s interior, gravity and pressure. In K. Fuch and H. Soffel (Eds.), Landoldt-Bönstein, Group V,
Volume 2a, pp. 84–96. Berlin: Springer.

Gilbert, F. and A. M. Dziewonski (1975). An application of normal mode theory to the retrieval of structural
parameters and source mechanisms from seismic spectra, Philisophical Transactions of the Royal Society,
London A 278, 187–269.

Herrin, E. (1968). 1968 seismological tables for P phases, Bull. Seism. Soc. Am. 58(4), 1193–1241.

Jeffreys, H. and K. E. Bullen (1940). Seismological Tables. London: British Association for the Advancement
of Science, Burlington House.

Kennett, B. L. N. and E. R. Engdahl (1991). Traveltimes for global earthquake location and phase identification,
Geophysical Journal International 105, 429–465.

Kennett, B. L. N., E. R. Engdahl, and R. Buland (1995). Constraints on seismic velocities in the Earth from
traveltimes, Geophysical Journal International 122, 108–124.

Morelli, A. and A. M. Dziewonski (1993). Body wave traveltimes and a spherically symmetric P- and S-wave
velocity model, Geophysics Journal International 112(2), 178–194.

Tull, J. E. (1989). SAC - Seismic Analysis Code: User’s Manual (Revision 2 ed.). Livermore, CA: Lawrence
Livermore National Laboratory.

Weber, M. and J. P. Davis (1990). Evidence of a laterally variable lower mantle structure from P- and S-waves,
Geophysics Journal International 102(1), 231–255.

Wessel, P. and W. H. F. Smith (1995). New Version of the Generic Mapping Tools released, Eos 76, 329.

	Overview
	Distribution
	What and Where
	Advantages of the Current Release
	Future Plans

	Tools
	Default Parameters
	TauP_Time
	TauP_Pierce
	TauP_Path
	TauP_Wavefront
	TauP
	TauP_Curve
	TauP_SetSac
	TauP_Table
	TauP_Create
	TauP_Console

	Phase naming in TauP
	Creating and Saving Velocity Models
	Velocity Model Files
	Using Saved Tau Models

	Programming Interface
	Java
	Jacl
	C

	Examples
	Velocity Model Files
	Creating the Model
	Travel Times
	Pierce Points
	Path
	Travel Time Curves

	Installing
	Troubleshooting

